3 1 Ja n 20 02 Superdiffusivity of asymmetric exclusion process in dimensions one and two

نویسندگان

  • C. Landim
  • J. Quastel
  • M. Salmhofer
  • H. - T. Yau
چکیده

We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as t 1/4 in dimension d = 1 and (log t) 1/2 in d = 2. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 20 10 57 v 2 3 1 Ja n 20 02 ( log t ) 2 / 3 law of the two dimensional asymmetric simple exclusion process

We prove that the diffusion coefficient for the two dimensional asymmetric simple exclusion process diverges as (log t)2/3 to the leading order. The method applies to nearest and non-nearest neighbor asymmetric simple exclusion processes.

متن کامل

t 1 / 3 Superdiffusivity of Finite - Range Asymmetric Exclusion Processes on Z

We consider finite-range asymmetric exclusion processes on Z with non-zero drift. The diffusivity D(t) is expected to be of O(t1/3). We prove that D(t) ≥ Ct1/3 in the weak (Tauberian) sense that ∫∞ 0 e −λttD(t)dt ≥ Cλ−7/3 as λ → 0. The proof employs the resolvent method to make a direct comparison with the totally asymmetric simple exclusion process, for which the result is a consequence of the...

متن کامل

un 2 00 6 t 1 / 3 Superdiffusivity of Finite - Range Asymmetric Exclusion Processes on Z Jeremy Quastel

We consider finite-range asymmetric exclusion processes on Z with non-zero drift. The diffusivity D(t) is expected to be of O(t1/3). We prove that D(t) ≥ Ct1/3 in the weak (Tauberian) sense that ∫∞ 0 e −λttD(t)dt ≥ Cλ−7/3 as λ → 0. The proof employs the resolvent method to make a direct comparison with the totally asymmetric simple exclusion process, for which the result is a consequence of the...

متن کامل

Superdiffusivity of occupation - time variance in 2 - dimensional asymmetric exclusion processes with density

We compute that the growth of the origin occupation-time variance up to time t in dimension d = 2 with respect to asymmetric simple exclusion in equilibrium with density ρ = 1/2 is in a certain sense at least t log(log t) for general rates, and at least t(log t)1/2 for rates which are asymmetric only in the direction of one of the axes. These estimates are consistent with an important conjectur...

متن کامل

Ja n 20 02 The Kink variety in systems of two coupled scalar fields in two space - time dimensions

In this paper we describe the moduli space of kinks in a class of systems of two coupled real scalar fields in (1+1) Minkowskian space-time. The main feature of the class is the spontaneous breaking of a discrete symmetry of (real) Ginzburg-Landau type that guarantees the existence of kink topological defects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008